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Abstract Ocean dynamics is known to have a strong effect on the global climate
change and on the composition of the atmosphere. In particular, it is estimated that
about 70% of the atmospheric oxygen is produced in the oceans due to the photosyn-
thetic activity of phytoplankton. However, the rate of oxygen production depends on
water temperature and hence can be affected by the global warming. In this paper, we
address this issue theoretically by considering a model of a coupled plankton–oxygen
dynamics where the rate of oxygen production slowly changes with time to account
for the ocean warming. We show that a sustainable oxygen production is only possible
in an intermediate range of the production rate. If, in the course of time, the oxygen
production rate becomes too low or too high, the system’s dynamics changes abruptly,
resulting in the oxygen depletion and plankton extinction. Our results indicate that the
depletion of atmospheric oxygen on global scale (which, if happens, obviously can
kill most of life on Earth) is another possible catastrophic consequence of the global
warming, a global ecological disaster that has been overlooked.

Keywords Phytoplankton · Global warming · Oxygen depletion · Extinction ·
Pattern formation

1 Introduction

Global warming has been an issue of huge debate and controversy over the last decade
because of its potential numerous adverse effects on ecology and society (Intergovern-
mental Panel on Climate Change 2014). Ocean makes about two-thirds of the Earth
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surface and also works as a huge heat capacitor, and hence is expected to be heavily
affected by the climate change. Discussion of the effect of warming on the ocean
dynamics usually focuses on possible changes in the global circulation (Shaffer et al.
2000) and on the expected melting of polar ice resulting in the consequential flooding
on the global scale (Najjar et al. 2000, 2010). Meanwhile, apart from the apparent
hydrophysical aspects of the problem, ocean is also a huge ecosystem and the effect
of global warming on its functioning may have disastrous consequences comparable
or even worse than the global flooding.

Functioning ofmarine ecosystems, with a particular interest in the plankton dynam-
ics, has long been a focus in ecological and environmental research (Enquist et al. 2003;
Harris 1986; Jones 1977; Steele 1978). One reason for this is that plankton is the basis
of the marine food chain; hence, a good understanding of its dynamics is required
for more efficient fishery (Cushing 1975; Eppley 1972; Medvinsky et al. 2002). In
a more general context, understanding of plankton dynamics is important for a reli-
able estimation of marine ecosystems productivity (Behrenfeld and Falkowski 1997;
Hoppe et al. 2002). We mention here that mathematical modelling has proved to be
an efficient research tool to reveal the properties of the plankton dynamics using both
simple, conceptual models and more complicated “realistic” ones (Allegretto et al.
2005; Behrenfeld and Falkowski 1997; Franke et al. 1999; Medvinsky et al. 2002;
Okubo 1980; Petrovskii and Malchow 2004; Steel 1980).

Plankton not only is a key element of themarine foodweb, but also have a significant
effect on the climate (Charlson et al. 1987; Williamson and Gribbin 1991) and the
composition of the atmosphere, in particular on the amount of oxygen (Harris 1986;
Moss 2009). Plankton consists of two different taxa: phytoplankton and zooplankton.
Zooplankton are animals (e.g., krill), and phytoplankton are plants. As most plants do,
phytoplankton can produce oxygen in photosynthesis when sufficient light is available,
e.g., in the photic layer of the ocean during the daytime. The oxygen first comes to
the water and eventually into the air through the sea surface, thus contributing to the
total oxygen budget in the atmosphere. This contribution appears to be massive: It is
estimated that about 70% of the Earth atmospheric oxygen is produced by the ocean
phytoplankton (Harris 1986; Moss 2009). Correspondingly, one can expect that a
decrease in the rate of the oxygen production by phytoplankton may have catastrophic
consequences for life on Earth, possibly resulting inmass extinction of animal species,
including the mankind. Therefore, identification of potential threats to the oxygen
production is literally an issue of vital importance.

It is well known that the water temperature has a notable effect on the phytoplank-
ton growth (Andersson et al. 1994; Eppley 1972; Raven and Geider 1988). Because
of its control on phytoplankton metabolic processes, the temperature can be expected
to affect the oxygen production and this has indeed been observed in several stud-
ies (Childress 1976; Jones 1977; Li et al. 1984). Phytoplankton produces oxygen in
photosynthesis during the day, but consumes it through respiration during the night.
The surplus, i.e., the difference (per phytoplankton cell) between the amount of oxy-
gen produced during the day and its amount consumed during the night, is called
the net oxygen production. It is the net production that eventually contributes to the
atmospheric oxygen. The matter is that the photosynthesis rate and the respiration rate
depend on the water temperature differently (Hancke and Glud 2004; Robinson 2000).
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As a result, the net production is a function of temperature. The temperature depen-
dence of the net production observed in the sea was attributed to the effect of local
geophysical anomalies (Robinson 2000). In this paper, we consider an increase in the
water temperature resulting form the global warming. Our goal is to understand what
can be the effect of the water warming on the coupled plankton–oxygen dynamics and
how it may affect the oxygen budget.

We address the above problem by means of mathematical modelling. Firstly, we
develop a conceptual plankton–oxygen model that takes into account basic processes
related to oxygen production in photosynthesis and its consumption, because of res-
piration, by phyto- and zooplankton in a well-mixed (nonspatial) system. Secondly,
we consider the properties of the model (both analytically and numerically) and show
that the system’s dynamics is only sustainable in a certain parameter range, namely
for an intermediate value of the oxygen production rate. The corresponding long-term
system behavior is determined either by a positive “coexistence” stable steady state
or by a stable limit cycle. Outside that range, the system does not possess positive
attractors and the dynamics is not sustainable, resulting in plankton extinction and
oxygen depletion. Thirdly, we consider the system’s response to a gradual change
in the oxygen production rate (the latter being assumed to be a result of the global
warming) and show that, once the production rate surpasses a certain critical value,
the system goes to extinction.

We then consider a spatially explicit extension of our model where plankton and
oxygen are carried around by turbulent water flows. In the parameter range where
the nonspatial system possesses a stable limit cycle, the spatial system exhibits the
formation of irregular spatiotemporal patterns. The patterns are self-organized in the
sense that they are not caused by any predefined spatial structure. We show that the
response of the spatial system to the gradual change in the oxygen production rate is
similar to that of the nonspatial one, i.e., a sufficiently large change in the production
rate results in the plankton extinction and oxygen depletion. Interestingly, the spatial
system appears to be sustainable in a broader parameter range so that plankton and
oxygen persist for values of the production rate where the nonspatial system goes
extinct. We also show that the spatial system may provide some early warning signals
for the approaching ecological disaster (i.e., plankton extinction and oxygen deple-
tion); in particular, we observe that, prior to the disaster, the spatial distributions of
plankton and oxygen become almost periodical.

2 Main Equations

Marine ecosystem is a complex system consisting of many nonlinearly interacting
species, organic substances, and inorganic chemical components. Correspondingly,
a “realistic” ecosystem model can consist of many equations (Fasham et al. 1990;
Kremer and Nixon 1978). However, since in this paper we are mostly interested in the
dynamics of the dissolved oxygen (for the sake of brevity, the word “dissolved” will
be omitted below), in particular in the conditions of sustainable oxygen production
due to the phytoplankton photosynthetic activity, such a detailed description seems to
be excessive. Instead, we consider a simple, conceptual model that includes oxygen

123



2328 Y. Sekerci, S. Petrovskii

Fig. 1 Structure of our
conceptual model describing the
interactions between oxygen,
phytoplankton, and zooplankton.
Arrows show flows of matter
through the system.
Phytoplankton produces oxygen
through photosynthesis during
the daytime and consumes it
during the night. Zooplankton
feeds on phytoplankton and
consumes oxygen through
breathing; more details are given
in the text

itself and the phytoplankton as its producer. The model also includes zooplankton
as the effect of zooplankton on the oxygen–phytoplankton dynamics is expected to
be important for two reasons: (i) because it is known to be a factor controlling the
phytoplankton density (Harris 1986; Steel 1980) and (ii) the zooplankton obviously
consumes oxygen through breathing. The structure of the model is shown schemati-
cally in Fig. 1.

Differential equations are known to be an efficient mathematical framework to
describe the plankton dynamics (Fasham et al. 1990; Huisman and Weissing 1995;
Huisman et al. 1999, 2004). We begin with the nonspatial case which is relevant in the
case of a well-mixed ecosystem. The corresponding model is given by the following
equations:

dc
dt

= A f (c)u − ur (c, u) − vr (c, v) − mc, (1)

du
dt

= g(c, u) − e(u, v) − σu, (2)

dv
dt

= κ(c)e(u, v) − µv, (3)

where c is the concentration of oxygen at time t , u and v are the densities of phyto-
plankton and zooplankton, respectively. The term A f (c) describes the rate of oxygen
production per unit phytoplankton mass. While function f (c) describes the rate of
increase in the concentration of the dissolved oxygen because of its transport from
phytoplankton cells to the surroundingwater (see the details below), factor A takes into
account the effect of the environmental factors (such as the water temperature) on the
rate of oxygen production inside the cells. Function g(c, u) describes the phytoplank-
ton growth rate which is known to be correlated to the rate of photosynthesis (Franke
et al. 1999); we therefore assume it to depend on the amount of available oxygen.
Terms ur and vr in Eq. (1) are the rates of oxygen consumption by phytoplankton and
zooplankton, respectively, because of their respiration. The coefficient m is the rate
of oxygen loss due to the natural depletion (e.g., due to biochemical reactions in the
water). The term e in Eq. (2) describes feeding of zooplankton on phytoplankton. The

123



Mathematical Modelling of Plankton–Oxygen Dynamics Under. . . 2329

consumed phytoplankton biomass is transformed into the zooplankton biomass with
efficiency κ , see the first term in the right-hand side of Eq. (3). Since the well-being
of zooplankton obviously depends on the oxygen concentration (so that, ultimately, it
dies if there is not enough oxygen to breathe), we assume that κ = κ(c). Coefficients
σ and µ are the natural mortality rates of the phyto- and zooplankton, respectively.

In order to understand what can be the properties of function f (c), we have to look
more closely at the oxygen production. Oxygen is produced inside phytoplankton cells
in photosynthesis and then diffuses through the cell membrane to the water. Diffusion
flux always directed from areas with higher concentration of the diffusing substance
to the areas with lower ones, and it is the larger, the larger is the difference between the
concentrations (cf. the Fick law). Therefore, for the same rate of photosynthesis, the
amount of oxygen that gets through the cellmembranewill be the larger, the lower is the
oxygen concentration in the surroundingwater. Therefore, f should be amonotonously
decreasing function of c that tends to zero when the oxygen concentration in the water
is becoming very large, i.e., for c → ∞. The above features are qualitatively taken
into account by the following parametrization:

f (c) = 1 − c
c + c0

= c0
c + c0

, (4)

(known as the Monod kinetics) where c0 is the half-saturation constant.
Considering phytoplankton multiplication, we assume that g(c, u) = α(c)u−γ u2,

where the first term describes the phytoplankton linear growth and the second term
accounts for intraspecific competition. Here, α(c) is the per capita growth rate and
coefficient γ describes the intensity of the intraspecific competition. Phytoplankton
produce oxygen in photosynthesis (during the day), but it also needs it for breathing
(mainly during the night); therefore, we assume that low oxygen concentration is
unfavorable for phytoplankton and is likely to depress its reproduction. On the other
hand, a phytoplankton cell cannot take more oxygen than it needs. Hence, α should
be a monotonously increasing function of c tending to a constant value for c → ∞.
The simplest parametrization for α is then given by the Monod function:

α(c) = Bc
c + c1

, (5)

where B is the maximum phytoplankton per capita growth rate in the large oxygen
limit and c1 is the half-saturation constant. Thus, for g(c, u), we obtain:

g(c, u) = Bcu
c + c1

− γ u2. (6)

Note that, in the special case c = const, Eq. (1) can be omitted and the system (1–3)
reduces to a prey–predator system with the logistic growth for prey (phytoplankton):

du
dt

=
(
K (c) − u

)
γ u − e(u, v) − σu, (7)
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dv
dt

= κ(c)e(u, v) − µv, (8)

where the carrying capacity K (c) = (B/γ )c/(c + c1) appears to be a function of
oxygen concentration. We mention here that the prey–predator system has often been
used in plankton studies either to study some fundamental properties of the plankton
dynamics (Medvinsky et al. 2002) or as an elementary “building block” in more com-
plicatedmodels (Kremer andNixon1978).WeconsiderHolling type II response for the
predator (zooplankton) and use the following standard parametrization for predation:

e(u, v) = βuv
u + h

, (9)

where β is the maximum predation rate and h is the half-saturation prey density.
The next step is to decide about the parametrization of plankton respiration, see

the second and third terms in the right-hand side of Eq. (1). For the phytoplankton
respiration, we apply the argument similar to the one used above for the phytoplankton
growth rate α(c) and describe it as

ur (c, u) =
δuc

c + c2
, (10)

where δ is the maximum per capita phytoplankton respiration rate and c2 is the half-
saturation constant.

Regarding the zooplankton respiration, for many zooplankton species their oxygen
consumption is known to depend on the oxygen concentration (Childress 1975, 1976;
Davenport and Trueman 1985). The consumption rate usually shows a linear increase
at small oxygen concentration but tends to a constant, saturating value at large oxygen
concentration (cf. Fig. 1 in Childress 1975). The simplest parametrization of this
kinetics is the Monod function:

vr (c, u) =
νcv

c + c3
, (11)

where ν is the maximum per capita zooplankton respiration rate and c3 is the half-
saturation constant.

Finally,with regard to the zooplankton feeding efficiency as a function of the oxygen
concentration, κ(c), there are generic biological arguments suggesting that it should
be of sigmoidal shape, i.e., being approximately constant for the oxygen concentra-
tions above a certain threshold, but promptly decaying to zero for the concentration
below the threshold (Devol 1981; Hull et al. 2000; Prosser 1961). Correspondingly,
we parameterize it as follows:

κ(c) = ηc2

c2 + c42
, (12)

where 0 < η < 1 is the maximum feeding efficiency and c4 is the half-saturation
constant.
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Considering Eqs. (1–3) together with (4), (6), and (9–12), our model takes the
following more specific form:

dc
dt

= Ac0u
c + c0

− δuc
c + c2

− νcv
c + c3

− mc, (13)

du
dt

=
(

Bc
c + c1

− γ u
)
u − βuv

u + h
− σu, (14)

dv
dt

= ηc2

c2 + c42
βuv
u + h

− µv. (15)

Due to their biological meaning, all parameters are nonnegative.
Since Eqs. (13–15) will mostly be studied by simulations, it is convenient to intro-

duce dimensionless variables. Let us consider

t ′ = tm, c′ = c
c0
, u′ = γ u

m
, v′ = βv

m
(16)

and the new (dimensionless) parameters as

B̂ = B
m
, Â = A

c0γ
, δ̂ = δm

c0γ
, ν̂ = νm

βc0
, σ̂ = σ

m
, µ̂ = µ

m
, (17)

ĥ = γ h
m

, η̂ = ηβ

m
, and ĉi =

ci
c0

where i = 1, 2, 3, 4. (18)

Equations (13–15) then turn into the following:

dc
dt

= Au
c + 1

− δuc
c + c2

− νcv
c + c3

− c, (19)

du
dt

=
(

Bc
c + c1

− u
)
u − uv

u + h
− σu, (20)

dv
dt

= ηc2

c2 + c42
uv

u + h
− µv, (21)

where primes and hats are omitted for the notations simplicity. Note that meaningful
range of dimensionless parameters is, generally speaking, different from that of the
original (dimensional) parameters; in particular, the dimensionless feeding efficiency
η is not necessarily less than one any more.

In the next section, we consider the steady states of the system (19–21), and its
transient dynamics will be considered in Sect. 3.3. A spatially explicit extension of
the system (19–21) will be considered in Sect. 5.

3 Analysis and Preliminary Results

System (19–21) is rather complicated. In order to better understand it properties, it is
instructive to start the analysis with a simpler model that does not contain zooplankton,
which is obtained from (19–21) by setting v(t) ≡ 0.
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3.1 Oxygen–Phytoplankton System

The zooplankton-free model is given by the following equations:

dc
dt

= Au
c + 1

− δuc
c + c2

− c, (22)

du
dt

=
(

Bc
c + c1

− u
)
u − σu. (23)

Correspondingly, its steady states are the solutions of the following system:

Au
c + 1

− δuc
c + c2

− c = 0, (24)
(

Bc
c + c1

− u
)
u − σu = 0. (25)

Equations (24–25) define the two (null)isoclines of the system, which we will call the
oxygen isocline and the phytoplankton isocline, respectively. The oxygen isocline is
therefore given by

u = c(c + 1)(c + c2)
Ac2 + (A − δ)c − δc2

. (26)

The phytoplankton isocline consists of two parts, i.e., of the following curve

u = Bc
c + c1

− σ (u > 0), (27)

and the straight line u = 0.
We readily observe that (0, 0) is a steady state of the system.As for the positive equi-

libria (if any), it does not seem possible to solve Eqs. (26–27) explicitly. Instead, since
system’s equilibria are the intersection points of the two isoclines, important conclu-
sions can be made by analyzing the mutual position of the corresponding curves. Fig-
ure 2a shows the isoclines (26) and (27) obtained for some hypothetical parameter val-
ues. Therefore, system (24–25) can have two positive equilibria (c̃1, ũ1) and (c̃2, ũ2).

It is readily seen that the extinction state (0, 0) exists for all parameter vales. The
two positive equilibria only exist in a certain parameter range. Considering A as the
controlling parameter (for the reason that will be explained in Sect. 4) and taking into
account its effect on the shape of the oxygen isocline (cf. Fig. 2a), we conclude that the
positive equilibria are only feasible if A is not too small, i.e., above a certain critical
value. When the value of A decreases, the two positive steady states move toward each
other, so that they eventually merge and disappear; see Fig. 2b.

The stability of the steady states can be revealed by considering the direction of
the flow ( dcdt ,

du
dt ) in the (c, u) phase plane of the system (22–23); see Fig. 3. It is

straightforward to see that the extinction state and the upper positive state are stable
nodes, while the lower positive state is a saddle (hence unstable). Thus, when A falls
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Fig. 2 a The (null)isoclines of the oxygen–phytoplankton system (24–25). Black curves show the first
(oxygen) isocline (26) obtained for c2 = 1, δ = 1 and A = 3, 5, 6, and 7 (from left to right, respectively);
red curve shows the second (phytoplankton) isocline (27) obtained for B = 1.8, σ = 0.1, and c1 = 0.7.
b The steady state values of c (obtained as the intersection points of the two isoclines) as a function of the
controlling parameter A (Color figure online)

Fig. 3 A sketch of the phase
plane of the
oxygen–phytoplankton system.
Black and red curves show the
oxygen isocline and
phytoplankton isocline,
respectively, large black dots
show the steady states, black
dashed curves show sample
trajectories of the system, and
arrows show the direction of the
phase flow as given by vector
( dcdt ,

du
dt ) (Color figure online)

below the critical value, the disappearance of the positive steady states happens in the
saddle-node bifurcation, so that only trivial the extinction state remains feasible. A
similar change in the systemproperties (i.e., the disappearance of the positive equilibria
in a saddle-node bifurcation) can also occur as a result of an increase in c1 or decrease
in B. From the ecological point of view, this bifurcation corresponds to an ecological
disaster with a complete depletion of oxygen and the extinction of phytoplankton.

3.2 Oxygen–Phytoplankton–Zooplankton System: Steady States Analysis

We now proceed to the analysis of the equilibria of the full system (19–21). Obviously,
the steady state values are the solutions of the following equations:
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dc
dt

= 0 = Au
c + 1

− δuc
c + c2

− νcv
c + c3

− c, (28)

du
dt

= 0 =
(

Bc
c + c1

− u
)
u − uv

u + h
− σu, (29)

dv
dt

= 0 = ηc2

c2 + c42
uv

u + h
− µv. (30)

Correspondingly, the system possesses the following steady states:
• The trivial equilibrium E1 = (0, 0, 0) corresponding to the depletion of oxygen
and the extinction of plankton. It is readily seen that this equilibrium exists always,
regardless of the choice of parameter values.

• The two semi-trivial, boundary equilibria E (1)
2 = (c̃1, ũ1, 0) and E (2)

2 =
(c̃2, ũ2, 0), where the steady state values c̃i and ũi (i = 1,2) are given by Eqs. (26–
27). Correspondingly, as was discussed in Sect. 3.1, these states exist only if A is
above the critical value.

• The positive (coexistence) equilibrium E3 = (c̄, ū, v̄).

Note that, while the existence of steady states E1, E
(1)
2 , and E (2)

2 can be readily
seen, the existence and uniqueness of E3 is not at all obvious. System (28–30) cannot
be solved analytically. Instead, Eqs. (28–30) were solved numerically with parameter
values chosen from a broad range, and it was established that a positive steady state
exists unless A is too large or too small.

Now we discuss the stability of steady states E1, E
(1)
2 , E (2)

2 , and E3. A general
method to reveal the stability of a steady state is to calculate the eigenvalues of the
Jacobian matrix (see “Appendix”). For the extinction state (E1), calculations are sim-
ple, resulting in λ1 = −1, λ2 = −σ , and λ3 = −µ. Thus, the extinction state is
always stable.

For the boundary state E (1)
2 , we recall that the corresponding steady state (c̃1, ũ1)

of the oxygen–phytoplankton subsystem is a saddle; therefore, E (1)
2 is unstable.

In order to reveal the stability of E (2)
2 , we consider the characteristic equation of

the corresponding Jacobian matrix:

[(
− Au

(1+ c)2
− 1 − uc2

(c + c2)2
− λ

)(
Bc

c + c1
− 2u − σ − λ

)

−
(

A
1+ c

− c
c + c2

)(
Bc1u

(c + c1)2

)]
·
(

u
u + h

(
c2

c2 + c42

)
−µ − λ

)
=0, (31)

where c and u are the steady state values given by Eqs. (26–27). Due to the structure of
the Jacobian matrix (see “Appendix”), Eq. (31) factorizes so that the part in the square
brackets corresponds to the oxygen–phytoplankton subsystemwhere we already know
the result: (c̃2, ũ2) is always stable; therefore, both eigenvalues are negative. The
stability of E (2)

2 is then determined by the third eigenvalue:

λ3 = u
u + h

(
c2

c2 + c42

)
− µ. (32)
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Fig. 4 A map in the parameter plane (A, c1) where different domains correspond to different stability
of equilibria E(2)

2 and E3; see details in the text. Since the map is obtained in numerical simulations, the
position of the domains’ boundaries is approximate (Color figure online)

Unfortunately, Eq. (32) is not instructive because c and u are not known explicitly. In
order to reveal the stability of E (2)

2 , we have to analyze it numerically; the results are
shown in Fig. 4.

Regarding the stability of the coexistence steady state E3, the corresponding char-
acteristic equation is very complicated and hence can only be solved numerically. We
obtain that, for this steady state, one eigenvalue is real and always negative, while the
other two eigenvalues are complex conjugate where their real part can be positive or
negative depending on parameter values.

Figure 4 shows the results of the steady states analysis as a map in parameter plane
(A, c1). Here, c1 is chosen as the second controlling parameter because it describes the
effect of oxygen on phytoplankton growth. In Domain 3, i.e., for some intermediate
values of A, E3 is stable and E (2)

2 is unstable. The system therefore exhibits bistability
(recall that E1 is always stable). With a decrease in A, E (2)

2 becomes stable, so that for
the parameters in Domain 2, the system exhibits tristability. With a further decrease in
A, i.e., in Domain 1, E (2)

2 disappears in a saddle-node bifurcation (see Sect. 3.1). For
approximately the same value of A, the coexistence state disappears as well so that,
for sufficiently small values of A, the only attractor of the system is the extinction
state.

With an increase in A, i.e., in Domain 4, E (2)
2 remains unstable (a saddle point)

and E3 looses its stability to become an unstable focus. For these parameters, the
unstable state E3 is surrounded by a stable limit cycle that appears through the Hopf
bifurcation when crossing from Domain 3 to Domain 4. With a further increase in A,
the limit cycle disappears through a nonlocal bifurcation when crossing from Domain
4 to Domain 5. For parameter values from Domain 5, the only attractor of the system
is the extinction state E1.

From the ecological point of view, the structure of (A, c1) parameter plane means
that the system is viable (in particular, ensuring sustainable production of oxygen)
only in the intermediate range of A. As we will show below, this observation has
important implications in the context of the climate change.
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Fig. 5 Oxygen concentration (blue) and phyto- and zooplankton densities (green and black, respectively)
versus time obtained for the initial conditions c0 = 0.385, u0 = 0.3, v0 = 0.1, and parameter a A = 2.02,
b A = 2.0534, c A = 2.054, and d A = 4. Other parameters are given in the text (Color figure online)

3.3 Numerical Simulations

In the nonspatial system (19–21), the information about the steady states existence and
stability provides an exhausting overview of the large-time dynamics of the system.
However, it does not always give enough details about the transient stage of the dynam-
ics given by the evolution of specific initial conditions. Meanwhile, there is a growing
understanding that the transient dynamics may be more relevant to the dynamics of
real ecosystems than the large-time asymptotics, cf. Hastings (2001, 2004). In order
to make an insight into this issue, in this section we present the results of numerical
simulations of the system (19–21), choosing parameter values representative of all
interesting dynamical regimes. We fix most of the parameters at some hypothetical
values as B = 1.8, σ = 0.1, c1 = 0.7, c2 = 1, c3 = 1, c4 = 1, η = 0.7, δ = 1,
ν = 0.01, µ = 0.1, and h = 0.1, but vary A in a broad range.

Figure 5 shows the oxygen and plankton densities versus time obtained for para-
meter A chosen in Domain 4 or Domain 5 (cf. Fig. 4). For parameters of Fig. 5a, the
system possesses a stable limit cycle, so that the initial conditions promptly converge
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Fig. 6 Trajectories of the oxygen–phytoplankton–zooplankton dynamical system shown in the correspond-
ing 3D phase space. Blue star shows the starting point (i.e., the initial values), and red star shows the end
point reached over the given time. Red diamond shows the coexistence steady state E3, and red circles show
the zooplankton-free states E(1)

2 and E(2)
2 . Parameters are the same as in Fig. 5 (Color figure online)

to oscillatory dynamics. Parameters of Fig. 5b are further away from the Hopf bifur-
cation curve (i.e., the boundary between domains 3 and 4), so that the limit cycle is
of a bigger size, which results in sustainable oscillations of a much larger amplitude.
The limit cycle disappears for parameters of Fig. 5c, so that the species densities go to
extinction after just a few oscillations. Parameters of Fig. 5d are further into Domain
5; there is no limit cycle and it is not surprising that the initial conditions promptly
converge to zero. Interestingly, the extinction is preceded by an outbreak, so that the
initial values first show a significant increase before starting decaying to extinction.

In order to make it easier to understand the system dynamics, as well as to trace the
changes in the system properties, we also use another way to present the simulation
results. Figure 6 shows the results in Fig. 5 as the trajectories in the corresponding
three-dimensional phase space. Here, the red circles show the boundary steady states
E (1)
2 and E (2)

2 , the red diamond shows the positive coexistence steady state E3, the
blue star shows the initial conditions, i.e., the starting point of the trajectory, and the
red star shows the end point of the trajectory reached over the given simulation time.
It is readily seen that the peak in the species densities observed in Fig. 5d is the effect
of the saddle point E (1)

2 .
Wemention here that, in the parameter range where the stable limit cycle exists, the

system has two attractors: the limit cycle itself and the extinction state E1. Hence, the
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dynamics depends on the initial conditions, i.e., which basin of attraction they belong
to. For the results shown in Figs. 5a,b and 6a,b, the initial conditions were chosen from
the attraction basin of the limit cycle. In case the initial conditions are chosen in the
attraction basin of E1, the dynamics is less interesting as the trajectories approach the
origin without any oscillations (not shown here).

4 Effect of the Global Warming: Results and Preliminary Discussion

As was discussed in the introduction, variations in the local water temperature can
have an effect on the photosynthesis rate and hence on the net amount of oxygen
produced over the daily cycle (Hancke and Glud 2004; Robinson 2000). In our model
(19–21) (or (13–15) in the original dimensional variables), the rate of oxygen produc-
tion is quantified by parameter A. In order to reflect the effect of temperature T on
photosynthesis, A becomes a function of T . In its turn, the temperature is a function
of time, so that A becomes a function of time too. Therefore, we consider A = A(t),
but keep other parameters fixed for the sake of simplicity.

Water temperature is known to fluctuate significantly on all temporal scales,
e.g., hourly, daily, monthly, and annually (Hull et al. 2008). A “realistic” function
A(t) taking into account those fluctuations is likely to be very complicated. However,
since the purpose of this study is to consider the effect of global warming conceptually
rather than predictively, this level of details seems to be excessive. Instead, in order to
account for the general trend (and not for details), we consider the simplest possible
choice of A(t), i.e., the linear function:

A = A0 for t < t1, A = A0 + ω (t − t1) for t ≥ t1. (33)

Here t1 is the moment when the global warming started, A0 is the rate of net oxygen
production “before changes,” and parameter ω quantifies the rate of global warming.

Available data are meager, and it remains unclear what is the typical phytoplank-
ton response to an increase in the water temperature, i.e., whether the rate of oxygen
production by phytoplankton actually decreases or increases. Therefore, we consider
two possible scenarios: (i) where a higher water temperature facilitates oxygen pro-
duction (ω > 0) and (ii) where a higher temperature hampers oxygen production
(ω < 0). Since global warming is a slow process, we consider ω to be very small,
i.e., |ω| ≪ min{A0, B, δ, σ, µ, ν η}. For the initial value of A, we assume that prior
to the climate change the ecosystem was in a “safe state,” i.e., with the coexistence
steady state E3 being either stable (Domain 3 in Fig. 4) or unstable but surrounded by
a stable limit cycle (Domain 4), so that A0 is chosen accordingly.

Note that, with A now being a function of t , the system (19–21) becomes nonau-
tonomous and strictly speaking the results of the previous section do not immediately
apply. However, having assumed that A(t) is a slowly changing function, we expect
that the properties of the corresponding autonomous system (i.e., with A = const) in
different parameter ranges (see Fig. 4) can provide a convenient skeleton for under-
standing the effect of changes.

We begin with case (i), i.e., ω > 0. Based on the heuristic arguments above,
the system is expected to develop, in the course of time, oscillations of increasing
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Fig. 7 a,b Oxygen concentration (blue) and the density of phyto- and zooplankton (green and black,
respectively) versus time obtained for ω = 10−5 and the initial conditions c0 = 0.385, u0 = 0.3, and
v0 = 0.1; the thick black line at the top shows A(t); c,d the corresponding system trajectories shown in the
3D phase space of the system. a,c For A0 = 1.97, b,d for A0 = 2, other parameters are given in the text
(see the beginning of Sect. 3.3) (Color figure online)

amplitude as an increase in A eventually moves the system further into Domain 4,
hence further away from the Hopf bifurcation curve. If the warming continues for a
sufficiently long time, which results in A becoming sufficiently large, one can expect
that all species should go extinct (in particular, the oxygen concentration drops to zero)
once the system moves to Domain 5 where the only steady state of the autonomous
system is extinction.

This appears to be in full agreement with simulations. Figure 7 shows the oxygen
concentration and plankton densities versus time obtained for the rate of warming
ω = 10−5 and two different initial values of the oxygen production rate, Fig. 7a,c
for A0 = 1.97 and Fig. 7b,d for A0 = 2. In both cases, A0 is in the parameter
range where E3 is a stable focus (Domain 3). Correspondingly, in both cases, at
early times the system exhibits oscillations of decreasing amplitude as the system is
converging to the stable steady state. In the case shown in Fig. 7a,c, the final value of
the oxygen production rate is A = 2 which is still below the Hopf bifurcation value
(which is AH ≈ 2.01) so that the oscillations eventually die out. However, in the case
shown in Fig. 7b,d, the final value of the oxygen production rate is A = 2.03 > AH .
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Fig. 8 a,b Oxygen concentration (blue) and the density of phyto- and zooplankton (green and black,
respectively) versus time; c,d the corresponding system trajectories in the 3D phase space of the system.
a,c For A0 = 2.024, b,d for A0 = 2.048, other parameters are the same as in Fig. 7 (Color figure online)

Correspondingly, although the amplitude of the oscillations decreases at the beginning,
it starts increasing when the system passes the Hopf bifurcation point.

For parameter values that result in a larger final value of A, i.e., either a larger A0
or a larger ω, the changes in the system dynamics can be more significant. Figure 8
shows the oxygen concentration and the plankton densities vs time obtained for the
same rate of warmingω = 10−5 but larger initial values of the oxygen production rate,
A0 = 2.024 and A0 = 2.048. In both cases, A0 lies in the parameter range where E3 is
an unstable focus surrounded by a stable limit cycle (Domain 4). For A0 = 2.024 (see
Fig. 8a, c), the warming leads to oscillations of steadily growing amplitude but without
any qualitative changes in the dynamics. However, for A0 = 2.048 (Fig. 8b, d), the
increase in A results in an ecological disaster where, after a number of oscillations of
increasing amplitude, plankton suddenly goes extinct and the oxygen concentration
falls to zero. This sudden and dramatic change in the dynamics obviously happens
when A moves, in the course of time, to the parameter range where there is no limit
cycle and the only attractor of the corresponding autonomous system is extinction
(cf. Domain 5 in Fig. 4).

A similar dramatic change in the system dynamics can occur for a smaller, “safe”
value of A0, but for a higher rate of global warming. Figure 9 shows the oxygen
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Fig. 9 Oxygen concentration
(blue) and the density of phyto-
and zooplankton (green and
black, respectively) versus time
obtained for A0 = 2 and
ω = 10−4, and other parameters
are the same as above. Thick
black line shows A(t) (Color
figure online)
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concentration and plankton densities obtained for A0 = 2 (as in Fig. 7b,d) and ω =
10−4. It is readily seen that the effect of climate changes on the dynamics of the
system follows the same scenario where the system exhibits oscillations of increasing
amplitude up to a certain time, but then suddenly goes to extinction (oxygen depletion).
A close look at A(t) (shown by the thick black line) reveals that the disaster occurs
for approximately the same value of A as in Fig. 8b, i.e., for A ≈ 2.055.

Note that, since in our conceptual model (33) the global warming is assumed to
continue indefinitely, the change in the system dynamics resulting in the catastrophic
plankton extinction and oxygen depletion is bound to happen regardless of the initial
conditions and the rate of change ω. A choice of smaller A0 or ω would only require a
longer time for A(t) to reach the dangerous range, but could not avert the disaster. In
particular, none of the cases shown in Figs. 7 and 8a, c is sustainable; in each of these
cases, if the system is let to run for longer, it will inevitably end up in extinction.

We now consider case (ii) where an increase in water temperature hampers the
oxygen production, i.e., where ω < 0. As we have seen above, the effect of changes in
the oxygen production rate A on the system dynamics can be predicted and understood
by establishing the correspondence between the value of A(t) at different times and
the properties of the system with A = const at different ranges of parameter A (see
Fig. 4). Therefore, one can expect that the plankton should go extinct and the oxygen
concentration to drop to zero once A becomes sufficiently small, i.e., when moving
to Domain 1 where the only steady state of the autonomous system is extinction. This
appears to be in full agreement with simulations (that we do not show here for the sake
of brevity). The dynamics is somewhat trivial in this case.Concentration c anddensities
u and v remain close to their steady state values (as given by E3); no oscillations were
observed. At the moment when A(t) reaches the critical value where E3 disappears,
the densities start decreasing and promptly approach the extinction state E1. As well
as in case (i), the extinction occurs regardless of the initial conditions and the rate of
warming ω; a choice of large A0 and/or smaller ω only postpones the extinction but
cannot avert it.

Therefore, we arrive at the conclusion that sustainable functioning of the plankton–
oxygen system is only possible in a certain intermediate range of the oxygenproduction
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rate A. Since A is known to be a function of temperature, it suggests that sustainable
functioning is only possible in an intermediate range of temperatures. Even if the
current state of the system is safe, a sufficiently large warming (roughly estimated as
5–6 ◦C, see Robinson 2000) would inevitably lead to an ecological disaster resulting
in a complete depletion of oxygen.

The above conclusion is made based on the properties of our model (19–21). The
question arises here as to how general and realistic this conclusion is as the model
apparently leaves many features of real marine ecosystems out of the scope. In par-
ticular, the model (19–21) does not contain space, hence assuming that both oxygen
and plankton are distributed uniformly. Although this assumption is known to work
well in some cases (in the so-called well-mixed systems), it becomes irrelevant in
a situation where the nonuniformity of the plankton distribution becomes prominent
and hence cannot be neglected. Meanwhile, strongly heterogeneous spatial distribu-
tion of plankton is rather common in marine ecosystems (Fasham 1978; Martin 2003;
Steele 1978). An observation that makes the spatial aspect of the plankton dynamics
especially relevant to this study is that conditions of species extinction can be signifi-
cantly different in spatially explicit models compared to their nonspatial counterparts;
see Petrovskii et al. (2001, 2002, 2004). Because of the self-organized pattern for-
mation, the species may be able to persist in a parameter range where they would
go extinct in the nonspatial system (Malchow et al. 2008). In the next section, we
consider a spatially explicit version of the model (19–21) and investigate how space
may alter the effect of global warming on the plankton dynamics and the oxygen
production.

5 Spatial Dynamics

One factor that makes the ecosystem dynamics spatial is the movement of organisms.
In the marine environment, movement occurs because organisms either are entrained
with the turbulentwater flows or possess the ability to self-motion, or because of a com-
bined action of the two mechanism. Phytoplankton is mostly passive, but zooplankton
canmove by itself. The relative importance of turbulent flows and self-motion depends
on the spatial scale and the spatial structure of the aquatic environment. For instance,
because of ocean stratification and the relatively small thickness of the upper (pro-
ductive) ocean layer, vertical migration of zooplankton is known to be very important
and strongly affects its vertical distribution and feeding rates (Gliwicz 1986). On the
contrary, horizontal self-motion is thought to play a minor role compared to the effect
of lateral turbulent mixing (Pinel-Alloul 1995).

Correspondingly, for the purposes of this study, we consider the following idealized
system.We assume that the vertical distribution of both phyto- and zooplankton is uni-
form through the photic layer where most of the photosynthetic activity takes place.
For the horizontal distribution, we consider a one-dimensional (1D) space, which can
be interpreted as a transect along the 2D ocean surface. Oxygen concentration and
plankton densities are functions of space x and time t , i.e., c(x, t), u(x, t), and v(x, t).
We neglect the effect of zooplankton self-movement and consider the horizontal tur-
bulence as the main mechanisms of spatial transport. The turbulent mixing is known
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to be approximated well by the turbulent diffusion (Monin and Yaglom 1971; Okubo
1980); thus, from (19–21), we arrive at the following equations:

∂c
∂t

= DT
∂2c
∂x2

+ Au
c + 1

− δuc
c + c2

− νcv
c + c3

− c, (34)

∂u
∂t

= DT
∂2u
∂x2

+
(

Bc
c + c1

− u
)
u − uv

u + h
− σu, (35)

∂v

∂t
= DT

∂2v

∂x2
+ ηc2

c2 + c42
uv

u + h
− µv. (36)

Here, DT is the turbulent diffusion coefficient and 0 < x < L where L is the size of
the domain.

For numerical simulations, it is convenient to introduce the dimensionless coor-
dinate as x ′ = x

√
m/DT in line with our choice of other dimensionless variables;

see the end of Sect. 2. In terms of the system (34–36), it means that DT = 1. We
emphasize that this is not a special choice of the turbulent diffusion coefficient, but
just a technical consequence of our choice of dimensionless variables.

Equations (34–36) are solved by the finite differences using the zero-flux boundary
conditions.The results beloware obtained for themesh steps,x = 0.5and,t = 0.01;
we checked that these values are small enough not to bring numerical artifacts.

Since we are mostly interested in conditions of sustainable oxygen production and
this, in ourmodel, is quantified by parameter A, and also because the system properties
were shown to depend on A significantly, we consider the dynamics of the system (34–
36) for different values of A but having other parameters fixed at some hypothetical
values as B = 1.8, σ = 0.1, c1 = 0.7, c2 = 1, c3 = 1, c4 = 1, η = 0.7, δ = 1,
ν = 0.01, µ = 0.1, h = 0.1, and L = 1000.

The choice of the initial conditions is a subtle issue. An arbitrary choice that is
not consistent with the system inherent properties may result in a very long transient
dynamics (Petrovskii and Malchow 2001). Combined with the effect of the global
warming, cf. Eq. (33), the long-living transients may result in a biased prediction about
the system properties. Therefore, in order to generate appropriate initial conditions,
we first consider the following “tentative” nearly uniform species distribution:

c(x, 0) = c̄, u(x, 0) = ū, v(x, 0) =
(
x − L

2

)
ϵ

L
+ v̄, (37)

where c̄, ū, and v̄ are the steady state values (as given by the positive equilibrium E3,
see Sect. 3.2) and ϵ is an auxiliary parameter.

It is known for other relevant diffusion–reaction systems that initial conditions (37)
result in pattern formationwhich is reflective of system’s complex dynamics (Malchow
et al. 2008; Medvinsky et al. 2002; Petrovskii and Malchow 2001). This appears to be
true for the system (34–36) as well. Figure 10 shows the spatial distributions of oxygen
and plankton obtained from (37) after the system (34–36) is run for sufficiently long
time to let the transient die out. Note that there is no any notable qualitative difference
between the distributions shown in Fig. 10a (obtained for t = 10,000) and Fig. 10b
(obtained for t = 12,000), which indicates that the system has reached its dynamical
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Fig. 10 Snapshots of the oxygen (blue) and plankton (green for phytoplankton, black for zooplankton)
distribution over space at a t = 10,000 and b t = 12,000 obtained for the “tentative” initial conditions
(37) and parameters A = 2.05 and ϵ = 0.02. For this value of A, the local dynamics is oscillatory due to a
stable limit cycle. Other parameters are given in the text (Color figure online)
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Fig. 11 Snapshots of the oxygen (blue) and plankton (green for phytoplankton, black for zooplankton)
spatial distribution obtained at t = 10,000 for a A = 2.02 and b A = 2.054. Other parameters are given in
the text. The initial conditions are shown in Fig. 10a (Color figure online)

equilibrium.Correspondingly,we consider distribution shown inFig. 10a as “inherent”
and use it as the initial condition for other simulations shown below.

We now proceed to simulations for different values of A. Figure 11a shows the
snapshot of oxygen and plankton spatial distributions obtained at t = 10,000 for
A = 2.02. For this value of A, the local dynamics is oscillatory; see Fig. 5a. The
system dynamics is sustainable, and the irregular spatiotemporal pattern persists; no
extinction occurs. The amplitude of the spatial variation becomes somewhat smaller
compared to the initial condition shown in Fig. 10a, because the size of the limit cycle
is smaller for this value of A.

Figure 11b shows the oxygen and plankton distributions obtained at t = 10,000 for
A = 2.054. Again, we observe that, in a manner apparently similar to the above, the
system persists through formation of spatiotemporal patterns. However, there is one
important difference: We recall that, for this value of A, the nonspatial system goes
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Fig. 12 Snapshots of the oxygen (blue) and plankton (green for phytoplankton, black for zooplankton)
spatial distribution obtained at t = 10,000 for A(t) given by Eq. (33) with ω = 10−5 and a A0 = 2, b
A0 = 2.048. Other parameters are given in the text (Color figure online)
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Fig. 13 a Oxygen concentration (blue) and the density of phyto- and zooplankton (green and black,
respectively) vs time at a fixed location x0 = 500. b Spatially averaged oxygen concentration and plankton
densities vs time. Parameters are the same as in Fig. 12b (Color figure online)

to extinction; see Fig. 5c. We therefore conclude that the conditions of sustainable
system’s functioning are less restrictive in the spatially explicit case.

The above results were obtained for a fixed value of A. Now we are going to
consider the effect of the global warming as is modelled by Eq. (33), i.e., where A
changeswith time. Figure 12 shows snapshots of the oxygen and plankton distributions
at t = 10,000 obtained for ω = 10−5 and different values of the initial oxygen
production rate A0, Fig. 12a for A0 = 2 and Fig. 12b for A0 = 2.048. The system
remains sustainable, and no extinction occurs. Interestingly, the corresponding “final”
values of A(t) are, respectively, A = 2.1 and A = 2.148, which in both cases is
larger than the maximum possible A(t) in the nonspatial system: Recall that, for
the parameters of Fig. 12b, the nonspatial system goes extinct already at t ≈ 750,
cf. Fig. 8b. However, a further increase in A, i.e., if the system is let to run for a longer
time, results in the system crash (i.e., extinction of plankton and complete depletion of
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Fig. 14 Snapshots of the oxygen (blue) and plankton (green for phytoplankton, black for zooplankton)
spatial distribution obtained at a t = 200 and b t = 2950. A0 = 2.05 and ω = 0.0001, other parameters
are given in the text (Color figure online)

oxygen) also in the spatial system. Figure 13 shows the plankton densities and oxygen
concentration vs time obtained for parameters of Fig. 8b. Here, Fig. 13a shows the
local densities (concentration) obtained at a fixed point in the middle of the domain,
i.e., c(x0, t), u(x0, t), and vc(x0, t) for x0 = 500, and Fig. 13b shows the spatially
averaged densities < c > (t), < u > (t), and < v > (t) where

< p > = 1
L

∫ L

0
p(x, t) dx, (38)

where p = c, u, v. It is readily seen that gradual decrease in the average densities is
followed by a sudden catastrophe when the oxygen production rate becomes too high.

Interestingly, as a response to an increase in A, the properties of the species spa-
tial distribution can change significantly in the course of time. Figure 14 shows the
snapshots of oxygen and plankton distribution at two different moments obtained for
A0 = 2.05 and for ω = 10−4. While at the beginning of the warming (see Fig. 14a
obtained for t = 200), the spatial distribution remains qualitatively similar to the initial
conditions (cf. Fig. 10a), in particular being prominently irregular; at a later time the
distribution becomes almost spatially periodical; see Fig. 14b obtained for t = 2950.
Remarkably, for this time A(t) ≈ 2.35, which is far beyond the safe parameter range
of the corresponding nonspatial system (cf. Fig. 5). We therefore observe that the
spatial system is more stable with regard to the changes in the oxygen production rate
A as the extinction of the corresponding nonspatial system occurred at A ≈ 2.055
(cf. Figs. 7, 9). However, a further increase in A leads to the system crash (recall that
in our model the global warming is assumed to continue indefinitely); in particular,
for the parameters of Fig. 14, extinction occurs at t ≈ 4000, i.e., for A(t) ≈ 2.4.
The corresponding temporal dynamics of the local and spatially averaged densities is
shown in Fig. 15a, b, respectively. It is readily seen that, some time before the average
values start their fast terminal decline, the amplitude of the irregular fluctuations seen
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Fig. 15 a Oxygen concentration (blue) and the density of phyto- and zooplankton (green and black,
respectively) vs time at a fixed location x0 = 500. b Spatially averaged oxygen concentration and plankton
densities vs time. Parameters are the same as in Fig. 14b (Color figure online)

in Fig. 15b decreases dramatically, which can be regarded as an early warning signal
of the approaching catastrophe.

In conclusion to this section, we mention that the response of the spatial system
to a decrease in A (i.e., when the global warming hampers the oxygen production,
cf. case (ii) in Sect. 4) appears to be similar to that of the nonspatial system. No
pattern formation has been observed, and the extinction occurs at approximately the
same values of A as in the nonspatial system.

6 Discussion and Conclusions

Potential effect of the global warming on the dynamics of populations, communities
and ecosystems (Culos and Tyson 2014; Ferrarini et al. 2014; Long and Tyson 2014),
terrestrial as well as aquatic (Franssen et al. 2011; Nguyen et al. 2011), has been
an issue of a vigorous discussion recently. The focus of attention has usually been
on the population dynamics to address the possibility of extinction or invasion of
particular species (Berestycki et al. 2014; Cosner 2014) and/or possible changes in
the community structure (Bonnefon et al. 2014; Kyriazopoulos et al. 2014). However,
the overall effect of the climate change on ecosystems is likely to be much broader and
is not exhausted by changes in species ranges and biodiversity loss. Indeed, ecosystems
are not always subjects of passive response to large-scale environmental changes, but
may have active feedbacks. In particular, plankton systems are known to affect the
climate on the global scale and hence to contribute to the climate change significantly
(Charlson et al. 1987; Williamson and Gribbin 1991).

One aspect of the plankton systems functioning that remains poorly investigated
is the effect of warming on the oxygen production by phytoplankton. Dynamics of
the dissolved oxygen in marine ecosystems has been a focus on increasing attention
recently (Addy and Green 1997; Breitburg et al. 1997; Chapelle et al. 2000; Decker
et al. 2004; Hull et al. 2000, 2008; Misra 2010; Sekerci and Petrovskii 2015) as the
concentration of dissolved oxygen is one of the fundamental environmental variables
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defining thewell-being of amarine ecosystem. A decrease in the oxygen concentration
below a certain level can result in hypoxia and mass mortality of marine fauna because
of asphyxiation. Moreover, this is an issue of crucial importance not only for marine
ecosystems themselves but also for terrestrial ecosystems on the global scale as about
70% of the atmospheric oxygen budget is produced in the oceans (Harris 1986; Moss
2009). However, the effect of water warming, in particular resulting from the global
climate change, has not been considered by now. In this paper, we address this issue
using mathematical modelling. It has been observed both in a few field studies and
in some laboratory experiments that the overall rate of oxygen production by phyto-
plankton can change significantly as a result of an increase in the water temperature
(Hancke and Glud 2004; Robinson 2000). Correspondingly, the goal of this study was
to reveal the principle possibility of an ecological disaster, such as large-scale oxygen
depletion, caused by such a change resulting from the global warming.

We have studied the oxygen–plankton dynamics using a mathematical model that
takes into account oxygen production in photosynthesis, plankton respiration, and the
effect of zooplanktonpredationonphytoplankton; seeFig. 1.Themodel is describedby
a system of three coupledODEs in the nonspatial (well-mixed) case and by three corre-
sponding diffusion–reaction PDEs in the spatially explicit case. The system dynamics
have been revealed by some analytical approaches and extensive numerical simula-
tions. We first considered a nonspatial system to reveal the structure of the parameter
space and showed that the system is sustainable only for intermediate values of the oxy-
gen production rate. For a sufficiently low or sufficiently high oxygen production rate,
plankton goes extinct and oxygen is depleted. For a baseline oxygen–phytoplankton
system neglecting the presence of zooplankton, the system is sustainable unless the
production rate becomes too low (see Fig. 2b). We then considered the dynamics of
the corresponding nonautonomous system where the oxygen production rate slowly
changes with time to take into account the increase in the water temperature due to
the climate change. We showed that a sufficiently large increase or decrease in the
production rate results is a bifurcation leading to a sudden depletion of oxygen and
plankton extinction.

The corresponding spatially explicit system exhibits a complicated spatiotemporal
dynamics typically resulting in the formation of a transient patchy pattern. Here,
we recall that plankton patchiness is a very common property of marine ecosystems
(Abbott 1993; Fasham 1978; Greene et al. 1992; Mackas and Boyd 1979; Steele
1978) and the diffusion–reaction models of phytoplankton–zooplankton dynamics
have previously been used to describe this phenomenon, e.g., see Okubo (1980),
Malchow et al. (2003, 2008),Medvinsky et al. (2002) and references therein. This self-
organized pattern formation makes the system’s dynamics sustainable in a somewhat
broader range of oxygen production rate. However, a sufficiently large increase or
decrease in the production rate leads to plankton extinction and oxygen depletion. Our
main findings are summarized in the diagram shown in Fig. 16.

Our results have important implications. A lot has been said about detrimental
consequences of the global warming such as possible extinction of some species
(and the corresponding biodiversity loss) and the large-scale flooding resulting from
melting Antarctic ice. In this paper, however, we have shown that the danger to be
stifled is probably more real than to be drowned. Using a model of coupled oxygen–
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Fig. 16 Graphical summary of our main findings

plankton dynamics, we have identified another possible consequence of the global
warming that can potentially bemore dangerous than all others.Wehave shown that the
oxygenproductionbymarine phytoplankton can stop suddenly if thewater temperature
exceeds a certain critical value. Since the ocean plankton produces altogether more
than one half of the total atmospheric oxygen, it would mean oxygen depletion not
only in the water but also in the air. Should it happen, it would obviously kill most of
life on Earth.

Note that it was not our aim here to calculate precise critical values of the oxygen
production rate. Instead, our aim is to identify the new threat in principle rather than
to link our analysis to specific plankton species or specific marine ecosystems. Sim-
ilarly, we do not attempt to estimate the value of the model parameters. In contrast
to other simulation studies where complicated “realistic” marine ecosystem models
were used (e.g., Chapelle et al. 2000; Fasham et al. 1990; Hull et al. 2008), our model
is relatively simple. One benefit of this approach is that the model becomes tractable
semi-analytically (see Sect. 3) and the change in model’s properties in response to rel-
evant factors can be revealed and understood relatively easily, cf. Sect. 3.1. Also, since
our model takes into account only very general, generic interactions in the oxygen–
plankton system, we believe that the model predictions possess a considerable degree
of generality.

The downside of the model’s simplicity is that many processes are left out of the
scope. Thus, our study leaves a number of open questions. Firstly, in our model, the
ocean hydrodynamics is taken into account very schematically (i.e., as the turbulent
diffusion). However, the amount of oxygen entering the atmosphere through the ocean
surface is known to depend on details of the ocean circulation (Hamme and Keeling
2008; Hein et al. 2014; Keeling et al. 2010; Matear et al. 2000; Shaffer et al. 2000).
Although it does not seem likely that ocean hydrodynamics can alter the dependence
of oxygen production on temperature, it seems probable that it can delay the oxygen
transport through the sea–air interface. How this delay may affect the atmospheric
oxygen budget remains to be investigated. Secondly, our model does not take into
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account the effect of oxygen saturation and its dependence on temperature.Meanwhile,
the solubility of oxygen in water is known to decline with water temperature, which
can be another factor reducing the oxygen concentration (Addy and Green 1997;
Hein et al. 2014). Thirdly, phytoplankton community consists of hundreds of different
species. To the best of our knowledge, data on the temperature dependence of the
oxygen production rate are currently available only for a handful of species (Hancke
and Glud 2004; Robinson 2000). How general is the observed response to an increase
in water temperature remains to be seen. Addressing these questions should become
a subject of future research.
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Appendix

The Jacobian matrix J , i.e., the matrix of the linearized system (19–21), is as follows:

J=

⎛

⎜⎜⎝

− Au
(1+c)2 − 1 − uc2

(c+c2)2
− νvc3

(c+c3)2
A

1+c − c
c+c2

− νc
c+c3

Bc1u
(c+c1)2

Bc
c+c1

− 2u − vh
(u+h)2 − σ − u

u+h

uv
u+h

2cc42

(c2+c42)2
vh

(u+h)2
c2

(c2+c42)
uc2

(u+h)(c2+c42)
− µ

⎞

⎟⎟⎠

(39)

Its specific form for each of the steady states is given below along with the corre-
sponding characteristic equation.

• Extinction state E1 = (0, 0, 0)
The Jacobian matrix (39) takes the following form:

J(0,0,0) =

⎛

⎝
−1 A 0
0 −σ 0
0 0 −µ

⎞

⎠ , (40)

and the characteristic equation is

(1+ λ)(σ + λ)(µ+ λ) = 0. (41)

• Zooplankton-free states E (1)
2 and E (1)

2
The Jacobian matrix is:

J(c,u,0)=

⎛

⎜⎝

− Au
(1+c)2 − 1 − uc2

(c+c2)2
− λ A

c+1 − c
c+c2

− νc
c+c3

Bc1u
(c+c1)2

Bc
c+c1

− 2u − σ − λ − u
u+h

0 0 u
u+h

c2

c2+c42
− µ − λ

⎞

⎟⎠ ,

(42)
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and the characteristic equation is:

[(
− Au

(1+ c)2
− 1 − uc2

(c + c2)2
− λ

)(
Bc

c + c1
− 2u − σ − λ

)

−
(

A
1+ c

− c
c + c2

)(
Bc1u

(c + c1)2

)]
·
(

u
u + h

(
c2

c2 + c42

)
− µ − λ

)
=0, (43)

where c and u are defined by Eqs. (26–27).
• Oxygen–phytoplankton–zooplankton coexistence state E3

J(c,u,v)

=

∣∣∣∣∣∣∣∣∣

− Au
(1+c)2 − 1 − uc2

(c+c2)2
− νvc3

(c+c3)2
− λ A

1+c − c
c+c2

− νc
c+c3

Bc1u
(c+c1)2

Bc
c+c1

− 2u − vh
(u+h)2 − σ − λ − u

u+h

uv
u+h

2cc42

(c2+c42)2
vh

(u+h)2
c2

(c2+c42)
uc2

(u+h)(c2+c42)
−µ−λ

∣∣∣∣∣∣∣∣∣

(44)

where c, u, and v are defined by Eqs. (28–30).
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